

Supplementary File 2: Quality and Risk of Bias Assessment

A. Observational Studies (Newcastle-Ottawa Scale)

Study	Selection (Max 4)	Comparability (Max 2)	Outcome (Max 3)	Total Score	Overall Risk	Key Limitations
Anand et al. (2023)	4	2	3	9/9	Low	None identified; robust adjustment for confounders.
Duchesne et al. (2019)	3	1	2	6/9	Moderate	Retrospective; unmeasured confounding possible.
Gong et al. (2023)	3	1	2	6/9	Moderate	Single-center design; selection bias risk.
Cothren et al. (2007)	3	1	2	6/9	Moderate	Small sample size; no control group.
French et al. (2020)	2	1	2	5/9	Moderate	Focus on bleeding disorders; limited generalizability.

B. Systematic Reviews/Meta-Analyses (AMSTAR-2)

Study	Protocol Registered?	Comprehensive Search?	Risk of Bias Considered?	Overall Confidence	Key Limitations
Martinez et al. (2024)	Yes (PROSPERO)	Yes	Yes	High	Heterogeneity in included studies.
Li et al. (2020)	No	Partial	Yes	Moderate	Limited search strategy; unpublished data not sought.
Cullinane et al. (2011)	N/A (Guideline)	Yes	Yes	High	Consensus-driven; lacks primary data.

C. Other Studies

Study	Tool Applied	Key Findings	Overall Risk	Limitations
Mauffrey et al. (2014)	Narrative synthesis	Expert consensus	Low	No formal bias assessment.
Franchini (2008)	N/A (Editorial)	Opinion-based	High	Not original research.

Key for Ratings:

• Newcastle-Ottawa Scale (NOS):

o Low risk: ≥7 stars o Moderate risk: 5–6 stars o High risk: ≤4 stars • AMSTAR-2:

o **High confidence:** ≤1 critical flaw o **Moderate confidence:** >1 non-critical flaw

o **Low confidence:** ≥1 critical flaw

References

- 1. Anand T, El-Qawaqzeh K, Nelson A, Hosseinpour H, Ditillo M, Gries L, et al. Association between hemorrhage control interventions and mortality in US trauma patients with hemodynamically unstable pelvic fractures. JAMA surgery. 2023;158(1):63-71.
- Martinez B, Breeding T, Katz J, Patel H, Santos RG, Elkbuli A. Outcomes of Preperitoneal Packing and Angioembolization for Hemorrhage Control in Hemodynamically Unstable Pelvic Fractures: A Systematic Review and Meta-Analysis. The American SurgeonTM. 2024;90(3):455-64.
- 3. Duchesne J, Costantini TW, Khan M, Taub E, Rhee P, Morse B, et al. The effect of hemorrhage control adjuncts on outcome in severe pelvic fracture: a multi-institutional study. Journal of Trauma and Acute Care Surgery. 2019;87(1):117-24.

- 4. Mauffrey C, Cuellar Iii D, Pieracci F, Hak D, Hammerberg E, Stahel P, et al. Strategies for the management of haemorrhage following pelvic fractures and associated traumainduced coagulopathy. The bone & joint journal. 2014;96(9):1143-54.
- Cullinane DC, Schiller HJ, Zielinski MD, Bilaniuk JW, Collier BR, Como J, et al. Eastern Association for the Surgery of Trauma practice management guidelines for hemorrhage in pelvic fracture—update and systematic review. Journal of Trauma and Acute Care Surgery. 2011;71(6):1850-68.
- Franchini M. Surgical prophylaxis in von Willebrand's disease: a difficult balance to manage. Blood Transfusion. 2008;6(Suppl 2):s33.
- Gong SC, Park JE, Kang S, An S, Kim MJ, Kim K, et al., editors. Preperitoneal pelvic packing versus angioembolization for patients with

- hemodynamically unstable pelvic fractures with pelvic bleeding: a single-centered retrospective study. Healthcare; 2023: MDPI.
- 8. French Z, Bilan V, Husseinzadeh H, Drelich DA, Rhoades R. Low Complication Rates in Patients with Bleeding Disorders Undergoing Major Surgery at an Academic Hemophilia Treatment Center. Blood. 2020;136:38-9
- 9. Li P, Liu F, Li L, Li Q, Zhou D, Dong J, et al. Effectiveness of pelvic packing in hemodynamically unstable patients with pelvic fracture: a meta-analysis. 2020.
- 10. Cothren CC, Osborn PM, Moore EE, Morgan SJ, Johnson JL, Smith WR. Preperitonal pelvic packing for hemodynamically unstable pelvic fractures: a paradigm shift. The Journal of trauma. 2007;62(4):834-9; discussion 9-42.

Open Access License

All articles published by Bulletin of Emergency And Trauma are fully open access: immediately freely available to read, download and share. Bulletin of Emergency And Trauma articles are published under a Creative Commons license (CC-BY-NC).