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Original Article

Objective: To assess the effect of locally administered verapamil on transected peripheral nerve regeneration 
and functional recovery. 
Methods: Sixty male healthy white Wistar rats were divided into four experimental groups (n=15), randomly: 
In transected group (TC), left sciatic nerve was transected and stumps were fixed in the adjacent muscle. In 
treatment group defect was bridged using chitosan tube (CHIT/Verapamil) filled with 10 µL verapamil (100ng/
mL). In chitosan conduit group (CHIT), the tube was filled with phosphate-buffered saline alone. In sham-
operated group (SHAM), sciatic nerve was exposed and manipulated. The repair trend was examined based on 
behavioral and performance tests as well as the variations of the gastrocnemius muscle, morphometric indices, 
and immunohistochemical indices.
Results: Sciatic nerve functional study, muscle mass and morphometric indices confirmed faster recovery of 
regenerated axons in CHIT/Verapamil than CHIT group (p0.001=). When loaded in a chitosan tube verapamil 
accelerated and improved functional recovery and morphometric indices of sciatic nerve. Immunohistochemical 
analysis revealed the S-100 protein was vastly present in the transverse nerve sections and the myelin sheath. In 
the treatment group (chit/verapamil), the immunohistochemical susceptibility of the axons being repaired and 
the axons in the myelin sheath to S-100 protein was higher than the other groups.
Conclusion: The present study demonstrated that a single local application of verapamil could accelerate 
functional recovery after transection of sciatic nerve.
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Introduction

Unlike other tissues in the body, peripheral nerve 
regeneration is slow and usually incomplete. 

Less than half of patients who undergo nerve repair 
after injury regain good to excellent motor or sensory 
function and current surgical techniques are similar 
to those described by Sunderland more than 60 
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years ago [1]. The conduits have been proposed to 
guide axons sprouting from the regenerating nerve 
end, provide a microenvironment for diffusion of 
neurotrophic and neurotropic factors secreted by 
the injured nerve stump, as well as help protect 
from infiltration of fibrous tissue [2].Chitosan tubes 
have been shown to be proposed in bridging of 
nerve defects [3].Chitosan conduits are an attractive 
alternative to other standard grafts because of no 
donor morbidity, availability, affordability and no 
foreign reactions [4, 5]. 

All clinically available conduits are hollow tubes 
although extensive research continues to focus on 
adding internal structure, Schwann cells, and growth 
factors to support axonal regeneration. Therefore, 
all autologous nerve graft alternatives including 
decellularized nerve grafts and autogenous and non-
autogenous conduits demonstrate similar efficacy 
but their use is limited to sensory nerves with small 
gaps <3 cm. Primary nerve repair or autogenous 
nerve grafts remain the mainstay of surgical 
nerve reconstruction for severe nerve injuries [6, 
7].In patients with subarachnoid hemorrhage the 
calcium channel blockers have been used to reduce 
the morbidity and mortality associated with delayed 
ischemic deficits [8-10].

To the best knowledge of the authors, the literature is 
poor regarding the beneficial local effects of verapamil 
(a calcium channel blocker) on transected sciatic nerve. 
Aimed to study local effects of verapamil on sciatic 
nerve regeneration, a study was designed to determine 
if local verapamil could in fact reduce dysfunction 
after nerve injury in the rat sciatic nerve transection 
model. Assessment of the nerve regeneration was 
based on functional and histomorphometric criteria 
4, 8 and 12 weeks after surgery.

Materials and Methods

Study Design and Animals
Sixty male Wistar rats weighing approximately 

250g were divided into four experimental groups 
(n=15), randomly: sham-operation group as normal 
control (SHAM), transected control (TC), chitosan 
conduit (CHIT) and verapamil treated group (CHIT/
Verapamil). Each group was further subdivided into 
three subgroups of five animals each and studied 
4, 8 and12 weeks after surgery. Two weeks before 
and during the experiments, the animals were 
housed in individual plastic cages with an ambient 
temperature of (23±3) °C, stable air humidity and a 
natural day/night cycle. The rats had free access to 
standard rodent laboratory food and tap water. All 
measurements were made by two blinded observers 
unaware of the analyzed groups.

Preparation of Chitosan Based Hybrid Nanofiber 
Conduit

The conduit was prepared based on a methods 
described by others [11]. 5 wt% Chitosan 

in Trifluroacetic Acid (TFA) and 12 wt% 
polycrapolactone in TFE solutions were prepared 
separately. They were then combined in PCL/
chitosan weight ratios varying from 40/60 to 
80/20 2 grams of solution at a time. The resulting 
solutions were then vortexed for 1 min to ensure 
the complete mixture of polymers. A DC voltage of 
approximately 19 kV was applied (High DC power 
supply, Del Electronics Corp.) between the syringe 
tip and a cylindrical collector. The distance between 
the syringe tip and collector was approximately 29 
cm with the syringe angled down approximately 30 
degrees below the horizontal. The positive voltage 
was supplied to the solution via a platinum wire, 
connected to the positive electrode, inserted into the 
solution. The cylindrical collector was electrically 
grounded by attachment of the negative electrode. 
The mats were first affixed to 2 cm x 2 cm cover 
slides and then soaked in 14 % NH4OH for 5 min. 
They were then thoroughly rinsed in deionized (DI) 
water and soaked in 1 wt% genipin (aqueous) for 24 
h. Finally, they were rinsed thoroughly in DI water 
for 5 min before further processing. Chitosan conduit 
was made by gentle injection of the prepared solution 
into a home-made mold [12]. The prepared conduit 
was 2 mm in external diameter, 1.8 mm in internal 
diameter and 10 mm in length. This internal diameter 
complies with optimal function in rat models.

Surgical Procedure
Animals were anesthetized by intraperitoneal 

administration of ketamine-xylazine (ketamine 5%, 
90mg/kg and xylazine 2%, 5mg/kg). The procedure 
was carried out based on the guidelines of the Ethics 
Committee of the International Association for the 
Study of Pain [13]. The University Research Council 
approved all experiments. Following surgical 
preparation in the sham-operation group, the left 
sciatic nerve was exposed through a gluteal muscle 
incision and after careful homeostasis the muscle 
was sutured with resorbable 4/0 sutures, and the skin 
with 3/0 nylon. In TC group, the left sciatic nerve was 
transected proximal to the tibio-peroneal bifurcation 
where a 7mm segment was excised, leaving a 10mm 
gap due to retraction of nerve ends. Proximal and 
distal stumps were fixed in the adjacent muscle with 
10/0 nylon epineurial suture. No graft was interposed 
between the stumps. In the CHIT group, a 7 mm 
nerve segment was resected to produce a 10 mm 
nerve gap after retraction of the nerve transected 
ends. The gap was bridged using achitosan conduit, 
entubulating 2 mm of the nerve stump at each end. 
The chitosan conduit was 2 mm in diameter with 2 
thickness in wall. Two 10/0 nylon sutures were used 
to anchor the conduit to the epineurium at each end. 
In verapamil treated group (CHIT/Verapamil) the 
conduit was filled with 10 μl verapamil(100ng/mL). 
The animals were anesthetized and euthanized with 
transcardiac perfusion of a fixative containing 2% 
paraformaldehyde and 1%glutaraldehyde buffer (pH 
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7.4) 4, 8 and12 weeks after surgery.

Functional Assessment of Reinnervation
Sciatic Functional Index (SFI)

Walking track analysis was performed 4, 8 12 and 
16 weeks after surgery based on the method of others 
[14, 15]. The lengths of the third toe to its heel (PL), 
the first to the fifth toe (TS), and the second toe to the 
fourth toe (IT) were measured on the experimental 
side (E) and the contralateral normal side (N) in each 
rat. The sciatic function index (SFI) of each animal 
was calculated by the following formula:

SFI = -38.3× (EPL-NPL)/NPL+109.5× (ETS-NTS)/
NTS +13.3× (EIT-NIT)/NIT-8.8

In general, SFI oscillates around 0 for normal nerve 
function, whereas around -100 SFI represents total 
dysfunction. SFI was assessed in the NC group and 
the normal level was considered as 0. SFI was a 
negative value and a higher SFI meant the better 
function of the sciatic nerve.

Muscle Mass
Recovery assessment was also indexed using 

the weight ratio of the gastrocnemius muscles 12 
weeks after surgery. Immediately after sacrificing of 
animals, gastrocnemius muscles were dissected and 
harvested carefully from intact and injured sides and 
weighed while still wet, using an electronic balance. 
All measurements were made by two independent 
observers unaware of the analyzed group.

Histological Preparation and Morphometric Studies
Nerve mid-substance in CHIT group, nerve mid-

substance in verapamil treated group, midpoint of 
normal sciatic nerve (SHAM) and regenerated mid 
substance of TC group were harvested and fixed 
with glutaraldehyde 2.5%. They were post fixed 
in OsO4 (2%, 2 h), dehydrated through an ethanol 
series and embedded in Epon. The nerves were cut in 
5 μm in the middle, stained with toluidine blue and 
examined under light microscopy. Morphometric 
analysis was carried out using an image analyzing 
software (Image-Pro Express, version 6.0.0.319, 
Media Cybernetics, Silver Springs, MD, USA). 
Equal opportunity, systematic random sampling and 
two-dimensional dissector rules were followed in 
order to cope with sampling-related, fiber-location-
related and fiber-size related biases [16].

Immunohistochemisrty
Tissue specimens were fixed with 4% 

paraformaldehyde for 2h and embedded in paraffin. 
Prior to immunohistochemistry nerve sections were 
dewaxed and rehydrated in PBS (pH 7.4). Then the 
nerve sections were incubated with 0.6% hydrogen 
peroxide for 30 minutes. To block non-specific 
immunoreactions, the sections were incubated with 
normal swine serum (1:50, DAKO, USA). Sections 
were then incubated in anti-S-100 antibody (1:200, 
DAKO, USA) for 1h at room temperature. They 

were washed three times with PBS and incubated 
in biotinylated anti-mouse rabbit IgG solution for 
1h. Horseradish peroxidase-labelled secondary 
antibody was applied for 1 h. After that all sections 
were incubated with 3,3’- diaminobenzidine 
tetrahydrochloride chromogen substrate solution 
(DAB, DAKO, USA) for 10 min. The results of 
immunohistochemistry were examined under a light 
microscope.

Statistical Analysis
The results were expressed as means±SD. Statistical 

analyses were performed using PASW 18.0 (SPSS 
Inc., Chicago, IL, USA). Model assumptions were 
evaluated by examining the residual plot. Results 
were analyzed using a factorial ANOVA with 
two between-subjects’ factors. Bonferroni test for 
pairwise comparisons was used to examine the effect 
of time and treatments. A two-sided p-value of less 
than 0.05 was considered statistically significant.

Results

Recovery of Sciatic Nerve Function
SFI Outcome

Figure 1 shows sciatic function index (SFI) values 
in all four experimental groups. Prior to surgery, 
SFI values in all groups were near zero. After the 
nerve transection, the mean SFI decreased to -100 
due to the complete loss of sciatic nerve function in 
all animals. The statistical analyses revealed that 
the recovery of nerve function was significantly 
(P=0.001) different between CHIT/Verapamil and 
CHIT groups and application of the verapamil in 
chitosan conduit significantly accelerated functional 
recovery in the course of time.

Muscle Mass Measurement 
Gastrocnemius muscles weight of injured and 

uninjured sides were measured in each group. There 
was statistically significant difference between 
percentage of the mean muscle weight ratios of 

Fig. 1. Box-and-whisker plots of sciatic nerve function index 
values (SFI) in each experimental group during the study 
period. Local administration of Verapamil gave better results 
in functional recovery of the sciatic nerve than in CHIT group. 
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CHIT/Verapamil and Chitosan groups (p=0.001). 
The results showed that in CHIT/Verapamil group 
muscle weight ratio was bigger than in CHIT group 
and weight loss of the gastrocnemius muscle was 
ameliorated by local administration of Verapamil 
solution (Figure 2). 

Histological and Morphometric Findings
The verapamil treated group presented significantly 

greater nerve fiber, axon diameter, and myelin sheath 
thickness during study period, compared to CHIT 
animals (p=0.001). Sham-operation group presented 
significantly greater nerve fiber and axon diameter, 
and myelin sheath thickness compared to CHIT/
Verapamil and CHIT groups animals (Table 1). In 
case of myelin thickness there was no significant 
difference between CHIT/Verapamil and CHIT 
groups, morphometrically (p=0.001).

Immunohistochemistry
Immunoreactivity to S-100 protein was extensively 

observed in the cross sections of regenerated nerve 
segments. The expression of S-100 protein signal was 
located mainly in the myelin sheath. The axon also 
showed a weak expression indicating that Schwann 
cell-like phenotype existed around the myelinated 
axons (Figure 3). In both CHIT/Verapamil and CHIT 
groups, the expression of S-100 and the findings 
resembled those of the histological evaluations.  

Discussion

Although both morphological and functional data 
have been used to assess neural regeneration after 
induced crush injuries, the correlation between these 
two types of assessment is usually poor [14-16]. 
Classical and newly developed methods of assessing 

Fig. 2. Gastrocnemius muscle weight measurement. The gastrocnemius muscles of both sides (operated left and unoperated right) were 
excised and weighed in the experimental groups at 12 weeks after surgery. Data are presented as mean±SD. * p<0.05 vs Chitosan group.

Table 1. Morphometric analyses of sciatic nerve in each of the experimental groups: Values are given as mean±SD.
Groups Axon counts fb/mm2 Axon diameter (µm) Myelin sheath thickness(µm)
SHAMa 29402±2265 11.30±0.11 2.60±0.12
TCb 4080±2015 3.37±0.12 1.06±0.08
CHITc 20307±2112 6.19±0.14 1.18±0.07
CHIT/Verapamil 25104±2287a 7.78±0.13 a 1.47± 0.09
aSHAM: Control group; bTC: Transected Control, cCHIT: Chitosan; The mean difference is significant at the 0.05 level vs. other 
groups (p=0.001)

Fig. 3. Immunohistochemical analysis of the regenerated nerves 12 weeks after surgery from middle cable (A) SHAM, (B) TC, (C) 
CHIT and (D) CHIT/Verapamil. There was clearly more positive staining of the myelin sheath-associated protein S- 100 (arrow) 
within the periphery of nerve, indicating well organized structural nerve reconstruction in CHIT/Verapamil group. Scale bar: 10 µm
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nerve recovery, including histomorphometry, 
retrograde transport of horseradish peroxidase and 
retrograde fluorescent labeling do not necessarily 
predict the reestablishment of motor and sensory 
functions [16-20]. Although such techniques are 
useful in studying the nerve regeneration process, 
they generally fail in assessing functional recovery 
[16]. Therefore, research on peripheral nerve injury 
needs to combine both functional and morphological 
assessment. Castaneda and Kinne (2002) suggested 
that arrival of sprouts from the proximal stump 
at the distal nerve stump does not necessarily 
imply recovery of nerve function [21]. Walking 
track analysis has frequently been used to reliably 
determine functional recovery following nerve repair 
in rat models [18-22]. It has been demonstrated that 
conventional and nano-conduits accelerate nerve 
regeneration in animal models [23-26].

The results of the present study showed that 
administration of verapamil into a chitosan conduit 
resulted in faster functional recovery of the sciatic 
nerve during the study period. Left gastrocnemius 
muscle weight was significantly greater in the 
CHIT/Verapamil group than in the CHIT group, 
indicating indirect evidence of successful end organ 
reinnervation in the verapamil treated animals. 
At week 12 quantitative morphometrical indices 
of regenerated nerve fibers showed significant 
differences between the CHIT and CHIT/Verapamil 
groups, indicating a beneficial effect of topical 
application of verapamil on the nerve regeneration.

As the posterior tibial branch of the sciatic nerve 
regenerates into the gastrocnemius muscle, it will 
regain its mass proportional to the amount of axonal 
reinnervation [27, 28]. In the present study 12 weeks 
after surgery the muscle mass was found in both 
experimental groups. However, CHIT/Verapamil 
group showed significantly greater ratios of the mean 
gastrocnemius muscle weight than Chitosan group 
indicating indirect evidence of successful end organ 
reinnervation.

In the histological studies, quantitative 
morphometrical indices of regenerated nerve fibers 
showed significant difference between Chitosan 
and CHIT/Verapamil groups indicating beneficial 
effect of local verapamil on the nerve regeneration. 
In immunohistochemistry the expression of myelin 
sheath special proteins was evident in both groups 
which indicate the normal histological structure. 
The location of reactions to S-100 in CHIT/
Verapamil group was clearly more marked than 
in the CHIT group implying that both regenerated 
axon and Schwann cell-like cells existed and were 
accompanied by the process of remyelination and 
the structural recovery of regenerated nerve fibers.

Membranes of the proximal and distal portions 
of the transected axons are resealed 5-30 min after 
the transaction [29]. Thereafter, the proximal stump 
gradually regrows, fostered by the neural cell surface 
molecule of the transmembrane glycoprotein Ll, 

nerve cell adhesion molecule (N-CAM), myelin 
associated glycoprotein PO, and the extracellular 
matrix components laminin and tenascin. The 
regenerating axons are guided by the Schwann cell 
processes and their growth within the Schwann 
cell basal lamina tubes is synchronous with the 
withdrawal and degeneration of the axonal remnants 
of the distal stump [30, 31]. Calcium ions play a crucial 
role in depolarization, outgrowth, excitability, aging, 
learning, and cell proliferation-in short, neuronal 
plasticity [32]. It is well known that peripheral nerve 
injury disrupts the permeability barrier function of 
the plasma membrane, allowing an influx of Ca2+ 
down a steep electrochemical gradient between the 
outside and the inside of the cell [33]. The resultant 
intracellular free Ca2+overload triggers a wide array 
of chain reactions, which eventually may lead to 
cell death [34, 35]. Therefore,an agent preventing 
the excessive influx of Ca’+ might attenuate cellular 
damage caused by mechanical neuronal injury and 
thus improve neuronal recovery [36].By reducing 
the amount of calcium influx into the axoplasm 
of the resprouting nerve fiber, the treatment with 
verapamil may provide the necessary optimum level 
(“set-point”) of Ca’+ influxthat promotes accelerated 
growth cone elongation[37-39]. However, it further 
reduces the buffering capacity of the terminals 
for Ca’+, which might render their responsiveness 
toCa2+ even stronger [40].

Even though our preliminary study shows the 
neuroprotective action of local verapamil in 
peripheral nerve injuries, determining the molecular 
mechanisms leading to the neuroprotective action 
remains needs to be investigated. We have not 
given the histological and molecular evidence for 
neuroprotective action of verapamil. This may be 
considered as a limitation to our study. Therefore, the 
authors stress that the aim of the current investigation 
was to evaluate a single local dose and clinical 
treatment potential of verapamil on transected sciatic 
nerve regeneration including functional assessments 
of the nerve repair, a case not considered in previous 
studies. The results of the present study indicated 
that a single local administration of verapamil at 
the site of transected nerve could be of benefit after 
chitosan conduit tubulization. Detailed mechanism 
of neuroprotective action remains to be investigated.

In conclusion, the present study demonstrated that a 
single local application of verapamil could accelerate 
functional recovery after transection of sciatic nerve 
and may have clinical implications for the surgical 
management of patients after facial nerve transection. 
Thus, dose–response studies should be conducted for 
verapamil to determine the combination of the graft 
and the compound that achieve maximal efficacy in 
nerve transection models.
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